housing choice, based on demographic characteristics of households, using discrete choice experiment method, in Isfahan city

Document Type : Research Paper

Authors

1 Ph.D Student, Faculty of Architecture and Urban Planning, Art University of Isfahan, Isfahan, Iran

2 Assistant professor, Faculty of Architecture and Urban Planning, Art University of Isfahan, Isfahan, Iran

3 Professor, Faculty of Administrative Science and Economics, University of Isfahan, Isfahan, Iran

Abstract

Choosing housing is the most basic need of every household.Therefore,identification and evaluation of effective factors in choosing housing from the viewpoint of the homeowner's households will play an important role in helping urban managers to promote and improve the housing conditions of the people.Accordingly,the present study was conducted to investigate and evaluate the factors affecting the probability of choosing housing with emphasis on the demographic characteristics of homeowning households in Isfahan. The research method is applied in terms of purpose and is descriptive-survey based on the data collection method. Data gathering method, documentary method by studying and investigating previous research, and field method. Data collection was done by designing empirical questionnaire, randomly from 300 households. These data were categorized in the EXCEL software and analyzed using the discrete multinomial logit model (MNL) in STATA software based on Random Utility Theory (RUT). The results of this study, taking into account the Z statistic of the variables, indicated that 11 variables were confirmed related to the properties of the housing, as well as the confirmation of 20 variables demographic variables defined in The model is relevant. The most influential demographic variables include: having children aged 18 and above, the number of home purchases, the reason for settling in Isfahan and the level of social relationships between the individual and his family, respectively,with 41,37,36,33%, the coefficient of positive effect on the probability of choosing in the multiple logit function.The results showed that the socio-economic are important and,in urban housing studies,should be specifically considered

Keywords


  1. آنامرادنژاد, رحیم. بهروز., رحیم بردی. (1394). «ارزیابی ویژگی‌های کمی وکیفی مسکن در ایران طی سال‌های 1390-1345»، فصلنامه پژوهش و برنامه ریزی شهری، مرودشت، دوره 6، شماره 20 ، 35-50.‎
  2. ابراهیم زاده, عیسی, قادرمرزی, جمیل. (1394). تحلیلی بر کیفیت مسکن محلات شهری راهکاری جهت بهبود کیفیت زندگی شهروندان مطالعه موردی: محلات شهر دهگلان. فصلنامه جغرافیا و توسعه،13(40)،139-156
  3. پوراحمد، احمد؛ رحمانی اصل، محمد و صفایی رینه، مصطفی؛(1395). بررسی و اولویت‌بندی ویژگی های محیطی تأثیرگذار برانتخاب محلّ سکونت (مطالعة موردی: شهر کهنوج)، نشریه مطالعات نواحی شهری، سال سوم، پیاپی6،  صص 1-20
  4. خلیلی عراقی، منصور، نوبهار ،الهام (1390). «پیش بینی قیمت مسکن در شهر تبریز: کاربرد مدل های قیمت هدانیک و شبکه عصبی مصنوعی»، پژوهش‌ها و سیاست‌های اقتصادی،دوره19،شماره 60،زمستان، 113-138.
  5. تعداد جمعیت و‌خانوار به تفکیک تقسیمات کشوری براساس سرشماری عمومی نفوس و مسکن ۱۳۹۵،درگاه ملی آمار.
  6. رفیعی، مینو(1383). «حق مسکن در ایران: سیاست‌های تأمین مسکن برای گروه های خاص»، فصلنامه اقتصاد مسکن، شماره 35 و 36 ،صص 36 تا 45 .
  7. زیاری، کرامت الله، آروین، محمود، فرهادی خواه، حسین. (1396). ارزیابی وضعیت شاخص‌های مسکن گزینی در شهر (نمونه موردی: شهر اهواز). مطالعات مدیریت شهری.9(30)،49-63
  8. عابدین درکوش، سعید(1389).درآمدی بر اقتصاد شهری، تهران: مرکز نشر دانشگاهی.
  9.  عزیزی، محمدمهدی (1383). «جایگاه شاخص‌های مسکن در فرآیند برنامه‌ریزی مسکن»، نشریه هنر های زیبا، دوره17،شماره 17، تهران، صص 31-43.
  10. قربی, میترا, اسمعیل پور, نجما, نقوی, مریم. (1396). سنجش رضایت‌مندی کیفیت محیط سکونت و واحد مسکونی در محلات شهری با تأکید بر اصول نوشهرگرایی مورد: محله شهید همتی‌فر کرمان، فصلنامه پژوهش و برنامه ریزی شهری، مرودشت، 8(31)، صص 83-104
  11.  محمدزاده،پرویزوهمکاران(1394). « تعیین عوامل مؤثر بر انتخاب مکان واحدهای مسکونی با استفاده از مدل انتخاب گسسته (مطالعه موردی: شهر تبریز)»، اقتصاد و مدیریت شهری،دوره3،شماره10،بهار،95-110
  12. نصیری، م (1385). شهرهای ایران. مشهد: نشر نیکان.
    1. Hausman, J.A., & McFadden, D.L. (1984). Specification tests for the multinomial logit model. Econometrica, 52(5), 1219–1240.
    2. Kim,..‌(2010).Location Decisions:and the Trade-off between Location and Housing Quality‌(Doctoral dissertation,Ohio State University).
    3. Kjær, T. (2005). A Review of the Discrete Choice Experiment with Emphasis on Its Application in Health Care. Health Economics.
    4. Lancaster, K. J. (1966). A new approach to consumer theory. Journal of political economy, 74(2), 132-157.
  1. Aluko, O. (2011). The Effects of Location and Neighbourhood Attributes on Housing Values in Metropolitan Lagos. Ethiopian Journal of Environmental Studies and Management , 4 (2), 69
  2. Anas, A. (1982). Residential Location Markets and Urban Transportation. New York: Academic Press.
  3. Andrew, M. and G. Meen. 2006. Population structure and location choice: A study of london   and south east england*. Papers in Regional Science, 85(3):401–419.
  4. Axhausen, K. W., König, A., Scott, D. M., & Jürgens, C. (2004). Locations, commitments and activity spaces. In Human Behaviour and Traffic Networks (pp. 205-230). Springer, Berlin.
  5. Bayoh, I., Irwin, E. G., & Haab, T. (2006). Determinants of residential location choice: How important are local public goods in attractinghomeowners to central city locations?. Journal of Regional Science, 46(1), 97-120
  6. Ben-Akiva, M. E., Lerman, S. R., & Lerman, S. R. (1985). Discrete choice analysis: theory and application to travel demand (Vol. 9). MIT press.
  7. Bradley, M. (1988). Realism and Adaptation in Designing Hypothetical Travel Choice Concepts. Journal of Transport Economics and Policy. 22, 121-137.
  8. Choguill, C. L. (2007). The search for policies to support sustainable housing. Habitat International, 31(1), 143-149.
  9. Choi, Youngeun. (2014). Choice, mobility, and place attachment: Minnesota's public school choice. (Doctoral dissertation).
  10. de Palma, A., K. Motamedi, N. Picard, and P. Waddell. (2005). A model of residential location choice with endogenous housing prices and traffic for the paris region. European TransportTrasporti Europei, 31:67–82.
  11. Eliasson, J. (2010). The influence of accessibility on residential location. In Residential Location Choice (pp. 137-164). Springer, Berlin, Heidelberg.
  12. Guo, JY & Bhat, CR )2007(,'Operationalizing the concept of neighborhood: Application to residential location choice analysis', Journal of Transport Geography.15(1), 31-45
  13. Habib, M., & Miller, E. (2009). Reference-dependent residential location choice model within a relocation context. Transportation Research Record: Journal of the Transportation Research Board, (2133), 92-99.
  1. Lee, B. H., & Waddell, P. (2010). Residential mobility and location choice: a nested logit model with sampling of alternatives. Transportation, 37(4), 587-601.
  2. Lee, B. H., Waddell, P., Wang, L., & Pendyala, R. M. (2010). Reexamining the influence of work and nonwork accessibility on residential location choices with a microanalytic framework. Environment and Planning A, 42(4), 913-930.
  3. Louviere, J. J., Hensher, D. A., & Swait, J. D. (2000). Stated choice methods: analysis and applications. Cambridge university press.
  4. Marschak, j. (1960). Binary Choice Constraints and Random Utility Indicators. In K. J. Arrow, S. Karlin,&P.Suppes(Eds.),Mathematical Methods  in Social Sciences.Stanford:Stanford University Press.
  5. McFadden, D. 1978. Modeling the choice of residential location. In A. Karlqvist, ed., Spatial ‌theory ‌Residential Location,.75–96.:Holland.
  6. McFadden, D. L. (1974). Conditional Logit Analysis of Qualitative Choice Behavior. In P.‌Zaremka‌(Ed.),‌Frontiers in Econometrics. New York: Academic Press.
  7. Mitchell, R. and R. Carson. 1989. Using Surveys to Value Public Goods:The Contingent Valuation Method. Johns‌Hopkins University Press for Resources for the Future, Washington.
  8. Pinjari, A. R., Bhat, C. R., & Hensher, D. A. (2009). Residential self-selection effects in an activity time-use behavior model. Transportation Research Part B: Methodological, 43(7), 729-748.
  9. Pinjari, A. R., R. M. Pendyala, C. R. Bhat, and P. A. Waddell.( 2011). Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions. Transportation, 38(6):933 – 958.
  10. Rose, J. M., & Masiero, L. (2010). A comparison of the Impacts of Aspects of Prospect Theory on WTP/WTAEstimated in Preference and WTP/WTA Space. European Journal of Transport and Infrastructure Research10(4).
  11. Schirmer, P. M., van Eggermond, M. A., & Axhausen, K. W. (2014). The role of location in residential location choice models: a review of literature. Journal of Transport and Land Use, 7(2), 3-21.
  12. Weisbrod,‌G.,‌Lerman,‌S.‌R.,‌&‌Ben-Akiva,‌M.‌(1980).‌Trade‌off‌s ‌in ‌residential ‌location decisions:

Transportation versus other factors.‌Transportation Policy and Decision-Making, 1(1), 13-26.

  1. Zolfaghari, A., A. Sivakumar, and J. W. Polak. (2012). Choice Set Pruning in Residential Location Choice Modelling: A Comparison of Sampling and Choice Set Generation Approaches in Greater London.‌Transportation Planning and Technology,‌35(1):87–106.
  2. Zondag, B., & Pieters, M. (2005). Influence of accessibility on residential locationchoice. Transportation Research Record: Journal of the Transportation Research Board, (1902), 63-70.