Ballantyne. R, Fien, J, & Packer. J, (2001), Program effectiveness in facilitating intergenerational influence in environmental education: Lessons from the field, The Journal of Environmental Education,VOL. 32, NO. 4,PP: 8–15.
2- Ballantyne.R,(1998),Interpreting visions: Addressing environmental education goals through interpretation.InD.Uzzell,R.Ballantyne (Eds.),Contemporary issues in heritage and environmental interpretation: Problems and prospects (pp.77–97) Norwich:The Stationary Office.
-3 BeatlEy. T,(2000), Green Urbanism: Learning from European Cities, Island Press, Washington.
4- Beatley. T, (2011), Biophilic Cities Integrating Nature into Urban Design an Planning. Washington-Covelo-London: Oisland Press.
5- Beatley. T, ( 2016), Handbook of Biophilic City Planning and Design, Washington-Covelo-London: Oisland Press.
6- Beatley. T,(2017), Biophilic Cities and Healthy Societies,urban planning,VOL 2,NO 4,PP: 1- 4.
7- Benedict. M. E, McMahon. E. T, (2006), Green Infrastructure: Linking Landscapes and Communities, VOL.22, NO. 5, PP: 797-798.
8- Browning. W, Ryan. C, Clancy. J, (2014), 14 Patterns of Biophilic Design. Improving Health & Well-Being in the Built Environment, Terrapin Bright Green llc,, New York.
9- Cook. E. A,( 2016), Biophilic Urbanism: Making Cities Sustainble through Ecoligical Design, international conference on Civil, Architecture and Sustainable Development (CASD - 2016) Dec. 1-2, London (UK) PP: 61-64.
10- Donovan. G. H, (2017), Including public-health benefits of trees in urban-forestry decision making, Urban Forestry & Urban Greening, VOL.22, PP:120-123.
11-Ebrahimpour. M, Majedi. H, Zabihi. H, (2017), Biophilic Planning, a new approachin achieving liveable cities in iranian new towns – Hashtgerd case study, journal Town and Regional Planning, vol 70, pp: 1-13.
12- Gardi. C, Panagos. P, Van Liedekerke. M, Basco. C, De Brogniez .D, (2015), Land take and food security: Assessment of land take on the agricultural production in Erope, Journal of Environmental planning and Management, VOL.58, NO.5, PP: 898 - 912.
13- Gill. S. E, Handley. J. F, Ennos. A. R, Pauleit. S, (2007), Adapting Cities for Climate Change: The Role of the Green Infrastructure, Built Environment, VOL. 33, NO.1,PP: 115-133.
14- Gullone. E, (2000), The Biophilia Hypothesis and life in the 21st Century: Increasing Mental health or Increasing Pathology?, Journal of Happiness Studies,VOL. 1, PP: 293-321.
15- Helene. L ,( 2016), Becoming biophilic: Challenges and opportunities for biophilic urbanism in urban planning policy, jurnal smart and Sustainable Built Environment,VOL.5,NO.1,PP:15-24.
16- Kellert, S, (2005), Building for life: Understanding and designing the human-nature connection. Washington, DC: Island Press.
17- Kellert, S. R., Heerwagen, J. H. and Mador, M. L, (2008), Biophilic Design: The Theory, Science and Practice of Bringing Buildings to Life, Wiley; 1 edition
18- Kellert, S, (2012), Birthright: People and Nature in Modern World. New Haven: Yale University Press.
19- Lehmann, S, (2014), Low carbon cities: Transforming urban systems, Routledge.
20- Martin. G & Marshall. A, ( 2007), State of world population.: Unleashing the potential of urban growth: UNFPA: United Nations Population Fund, Thoraya Ahmed Obaid, Executive.
21-Newman, P & Matan, A, (2012), Human Health and Human Mobility Current Opinion in Environmental Sustainability, VOL. 4, NO. 4, PP: 420 – 426.
22- Rastandeh, A., Pedersen Zari, M., K. Brown, D. and Vale, R, (2017) Utilising exotic flora in support of urban indigenous biodiversity: lessons for landscape architecture, Landscape Research, 1-13.
23-Pedersen Zari. M, (2017), What makes a city biophilic? Observations and experiences from the wellingtn Nature Map project, M. Aurel (eds.), Back to the future: The next 50 years, 51st International Conference of the Architectural Science Association, The Architectural Science Association and Victoria University of Wellington. pp. 1–10.
24- Ryan, C. O., Browning, W. D., Clancy, J. O., Andrews, S. L. and Kallianpurkar, N. B, (2014) Biophilic design patterns: emerging nature-based parameters for health and well-being in the built environment, International Journal of Architectural Research: ArchNet-IJAR, VOL.8, NO.2, PP: 62-76.
25- Russo. A, Cirella. G, (2017), Biophilic Cities: Planning for Sustainable and Smart Urban Environments, In book: Smart Cities Movement in BRICS, Chapter: 17, Publisher: Observer Research Foundation and Global Policy Journal, Editors: Rumi Aijaz, pp.153-159.
26- Samson. R, Grote. R, Calfapietra. C, Cariñanos. P, Fares. S, Paoletti. E, Tiwary, A. (2017) Urban Trees and Their Relation to Air Pollution, in, The Urban Forest, Springer,PP: 21-30.
27- Terrapin. B. G, LLC, ( 2012), The Economics of Biophilia: Why Designing with Nature in Mind Makes Financial Sense, WWW.terrapinbrightgreen.com.
28- Wilson. E, ( 2012), Takes a very long view of cities, Partnership with New York City: Cities of Opportunity, Price, Waterhouse, Cooper, New York, NY, PP: 24-29.
29- Wilson. E. O, (1984), Biophilic: Harvard University Press, Cambridge, MA, USA.
30- Ziari. K, Pourahmad. A, Fotouhi Mehrabani.B, Hosseini. A, (2018), Environmental sustainability in cities by biophilic city approach : a case study of tehran, international journal of urban sciences, VOL.22, NO.4, PP:1-31