Strategic Planning of Sustainable Urban Development with Special Approach to Low Carbon City (Case Study: Sanandaj City)

Document Type : .

Authors

1 Master of Urban Planning, Department of Urban Planning and Design, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran

2 Assistant Professor, Department of Urban Planning and Design, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran

Abstract

Today, activities in cities such as household fuels and transportation, poor waste management of urban waste have all directly and indirectly led to an increase in greenhouse gas emissions and have had many adverse effects on climate change; Therefore, it is necessary to examine factors affecting this important issue and to moderate its adverse effects. Thus, first, by combining the SWOT and FTOPSIS models, the superiority of the weaknesses in the internal environment and the threats in the external environment were determined. Then, using the COPRAS model and using a questionnaire including 6 components and 30 indicators, the most important components affecting the realization of low carbon urban development were investigated. In the next phase, by examining the quality of communication structure and the impact of strategic planning strategies of low carbon city on the realization of its components in Sanandaj city by using modeling of structural equations in the form of Amos Graphic software, the "role of strategic planning for the development of the low-carbon city and its implementation in the city of Sanandaj" was examined. The results show that component of low carbon urban development has the highest score, and based on architecture of the communication structure, strategic planning of low carbon city through its four explanatory strategies has a positive and significant impact on the implementation of low carbon city, in the form of 6 components. This is based on the weighted regression obtained equal to 0.486. The results indicate that the formulation of detailed and strategic strategies for a low carbon city can be instrumental in achieving a sustainable low carbon city in the form of a low-carbon environment, low carbon economy, low carbon transportation, low carbon urban development and planning.

Keywords


An, Q; Sheng, S; Zhang, H; Xiao, H; & Dong, J. (2019). Research on the construction of carbon emission evaluation system of low-carbon-oriented urban planning scheme: taking the West New District of Jinan city as example. Geology, Ecology, and Landscapes, 3(3), 187-196. https://doi.org/https://doi.org/10.1080/24749508.2018.1532209.
Badiee, l; Ezatpanah, B; Soltani, A. (2019). Explain and analyze the development of urban sustainability based on environmental components: case study of Sanandaj city. Research and Urban Planning, 10(36), 75-86, (In Persian).
bahrami, S; ramezani, J; Heydarzadeh, H; & Pourasghar Sangachin, F. (2018). Investigating the Relationship between Correlation of Carbon Dioxide emissions with Population, Urbanization Rate and GDP in Iran Using the Multivariate Regression Model. Journal of Environmental Science Studies, 2(4), 571-581, (In Persian).
Chan, E; Conejos, S; & Wang, M. (2017). Low Carbon Urban Design: Potentials and Opportunities. From book Creating Low Carbon Cities, 75-88. https://doi.org/DOI: 10.1007/978-3-319-49730-3_8
Cheng, J., Yi, J., Dai, S., & Xiong, Y. (2019). Can low-carbon city construction facilitate green growth? Evidence from China’s pilot low-carbon city initiative. Journal of Cleaner Production, 231(1), 1158-1170. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.05.327
Cheng, J., Zeng, G., & Fang, T. (2012). The Origin and Connotation of Low Carbon City: A Conceptual Framework. Presented at the Proceedings of fifth international joint conference on computational sciences and optimization (CSO), IEEE Xplore Publishers.
Destek, M. A., & Sinh, A. (2020). Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries. Journal of Cleaner Production, 242(118537), 1-11. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118537
Fallahi, F., & Hekmatifarid, S. (2015). Determinants of CO2 Emissions in the Iranian Provinces (Panel Data Approach). Journal of iranian energy economics, 2(6), 129-150, (In Persian).
Fathi, B; Khodaparast Mashhadi, M; Homayounifar, M; & Sajadifar, H. (2017). Comparative Study of Energy and Environmental Efficiency in Developing Countries: Desirable and Undesirable Output Approach. Quarterly Journal of Economic Research and Policies, 25(81), 85-121, (In Persian).
Fu, Y., & Zhang, X. (2017). Planning for sustainable cities? A comparative content analysis of the master plans of eco, low-carbon and conventional new towns in China. Habitat International, (63), 55-66. https://doi.org/https://doi.org/10.1016/j.habitatint.2017.03.008.
Ghaemi Asl, M; M, Salimifar; Mahdavi Adeli, M; & Rajabi Mashhadi, M. (2017). Simulation of Low-Carbon Eco-City by Using Urban Waste and Photovoltaic Technology: Sustainable Energy Planning of Urban Sector in Holy Mashhad. Journal of Urban Economics and Management, 5(17), 67-81, (In Persian).
Ghazi, F; Charehjoo, F; & Mirmoghtadaee, M. (2019). Spatial Evaluation of Energy Performance at Neighborhood Scale Case Study: Sanandaj City. Space Ontology International Journal, 8(2), 77-88.
Griffiths, S., & Sovacool, B. (2020). Rethinking the future low-carbon city: Carbon neutrality, green design, and sustainability tensions in the making of Masdar City. Energy Research & Social Science, 62(101368), 1-9. https://doi.org/https://doi.org/10.1016/j.erss.2019.101368
habibi,  q, Rahimikakejub, A., & Abdi, H. (2012). Ecological Footprint Assessment of Urban Transportation; New Approach for Sustainability of Urban Transportation Planning). Geographical planning of space quarterly journal, 2(5), 99-117, (In Persian).
Heydari, A; Rahnama, M; & Heydari, H. (2019). Analysis of Urban Environment Sustainability in Kurdish Cities of Iran Using the Future Study Approach (Case Study: Saqqez City). Chapters, in: Vito Bobek (ed), Smart Urban Development, IntechOpen. DOI:10.5772/intechopen.86009
Hodkinson, G., Galal, H., & Martin, C. (2018). Circular Economy in Cities Evolving the model for a sustainable urban future. In Collaboration with PwC.
Hosseini, H. (2018). Compressed city And sustainable urban development of Sabzevar. Scientific Journals Management System, 17(45), 93-116, (In Persian).
Hou, Y., Long, R., Zhang, L., & Wu, M. (2020). Dynamic analysis of the sustainable development capability of coal cities. Resources Policy, 66(101607), 1-8. https://doi.org/https://doi.org/10.1016/j.resourpol.2020.101607
Hunter, G; Sagoe, G; Vettorato, D; & Jiayu, D. (2019). Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review. Sustainability, 11(4342), 1-37. https://doi.org/http://dx.doi.org/10.3390/su11164342
Husain, D., Garg, P., & Prakash, R. (2019). Ecological footprint assessment and its reduction for industrial food products. International Journal of Sustainable Engineering, 1(1), 1-14. https://doi.org/https://doi.org/10.1080/19397038.2019.1665119.
Kazemian, Gh; Rasouli, A; & Khazaei, M. (2017). New and renewable energies position in creating viable cities, case study Tehran city. Research and Urban Planning, 8(29), 99-118, (In Persian).
Khosravi, B. (2000). Designing the Carbon Free Urban Spaces (Nodes) (Case Study: Tajrish sq.) (Master Thesis). Tarbiat moddares, (In Persian).
Lafakis, C., Ratz, L., Fazio, E., & Cosma, M. (2019). The Economic Implications of Climate Change (MOODY’S ANALYTICS). London.
Li, W., & Yi, P. (2020). Assessment of city sustainabilitydCoupling coordinated development among economy, society and environment. Journal of Cleaner Production, 256(120453), 1-10. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120453
LOPA. (2000). Iran Environmental Protection Laws and Regulations Text of the Kyoto Protocol on the United Nations Framework Convention on Climate Change, Environmental Protection Agency. Law Office and Parliamentary Affairs, (In Persian).
Lotfi, S; Sholeh, M; Farmand, M; & Fattahi, K. (2016). Urban Design Criteria for Zero-Carbon Neighborhoods. Naghshe Jahan, 6(1), 80-92, (In Persian).
Maleki, S; Ashkezari, M; & Moadat, E. (2014). Analysis of Urban Ecological Pathology (Case Study of Yazd City). Journal od Arid Regions Geographic Studies, 5(17), 101-115, (In Persian).
Marsusi, N; Hosseinzadeh, R; & Seftralizadeh, E. (2015). Assessing the potential of urban areas for the development of the Boomshahr, model Study sample: Isfahan city areas. Journal of Research and Urban Planning, 6(21), 157-174, (In Persian).
McBain, B., Lenzen, M., Albrecht, G., & Wackernagel, M. (2018). Reducing the ecological footprint of urban cars. International Journal of Sustainable Transportation, 12(2), 117-127. https://doi.org/10.1080/15568318.2017.1336264
Ming, T., Ming, Q., Qijiao, S., & Ye, Q. (2020). Why does the behavior of local government leaders in low-carbon city pilots influence policy innovation? Resources, Conservation & Recycling, 152(104483). https://doi.org/https://doi.org/10.1016/j.resconrec.2019.104483
Mofidi, M. A. (2018). Developing principles and indicators of low carbon urban neighborhood form design. Case Study: Tajrish Neighborhood, Tehran (Master Thesis). Tehran art University, Art and Architecture Department, (In Persian).
Mohammadbagheri, A. (2014). The need to focus on the development of low-carbon cities in the urban management structure. Presented at the The first annual conference on architectural, urban planning and urban management research, yazd: Institute of Architecture and Urban Development of Mehrazi Road Ambassadors, (In Persian).
Molaei, M., & Basharat, E. (2016). Investigating Relationship between Gross Domestic Product and Ecological Footprint as an Environmental Degradation Index. Journal of economic research, 50(4), 1017-1033, (In Persian).
Mousavi, M; & Hammami, M. (2015). Modeling the effect of global carbon dioxide emissions on global warming. Environmental Science and Engineering, 1(2), 9-21, (In Persian).
Parizadi, P; & Salehi, AP. (2018). Spatial analysis of the factors influencing the unstable pattern of urban development (case study: baneh ciry). Geographical planning of space quarterly journal, 7(26), 100-114, (In Persian).
Pongthanaisawan, J., Wangjiraniran, W., Chuenwong, K., & Pimonsree, L. (2018). Scenario Planning for Low Carbon Tourism City: A Case Study of Nan. Energy Procedia, 152, 715-724. https://doi.org/https://doi.org/10.1016/j.egypro.2018.09.235
Razi, D. (2015). Assessment and analysis of Ecological foot print (Case study: Townships of Mazandaran province). Studies of urban structure and function, 3(10), 103-125, (In Persian).
Rimi, I; & Aliyu, Y. (2019). Low Carbon City: Strategies and Case Studies (Leal Filho W., Azul A., Brandli L., Özuyar P., Wall T. (eds) Sustainable Cities and Communities. Encyclopedia of the UN Sustainable Development Goals). Springer, Cham.
Ruan, F., Yan, L., & Wang, D. (2020). The complexity for the resource-based cities in China on creating sustainable development. Cities, 97(102571), 1-10. doi.org/https://doi.org/10.1016/j.cities.2019.102571
Salehnasab, V. (2014). The Role of Low Carbon Economics in Reducing the Effects of Global Warming »,. Presented at the Climate change and a path to a sustainable future, Tehran: Institutional People’s Population Supporting Land Organization, (In Persian).
Shen, L., Wu, Y., Shuai, C., Lu, W., & Chen, X. (2018). Analysis on the evolution of low carbon city from process characteristic perspective. Journal of Cleaner Production, 1(1). https://doi.org/doi: 10.1016/j.jclepro.2018.03.190
siong,  ho chin. (2018). Energy saving cities, toward sustainable urban form. (F. Charehjoo, trans). Tehran: Avvaloakhar, (In Persian).
Sununta, N., Kongboon, R., & Sampattagul, S. (2018). GHG evaluation and mitigation planning for low carbon city case study: Dan Sai Municipality. Journal of Cleaner Production, (228), 1345-1353.
Tan, S., Yang, J., Yan, J., Lee, C., Hashim, H., & Chen, B. (2017). A holistic low carbon city indicator framework for sustainable development. Applied Energy, 185(2), 1919-1930. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.03.041
Toledo, R. F. de, Junior, M., Filho, F., & Costa, H. G. (2019). A scientometric review of global research on sustainability and project management dataset. Data in brief, 25(104312), 1-13. https://doi.org/https://doi.org/10.1016/j.dib.2019.104312
UN. (2019). World Urbanization Prospects: The 2018 Revision (World Urbanization Prospects: The 2018 Revision No. ST/ESA/SER.A/420). New York: United Nations.
Yang, Xuan; & Li, Rongrong. (2018). Investigating Low-Carbon City: Empirical Study of Shanghai. Sustainability, 10(1054), 1-14. https://doi.org/http://dx.doi.org/10.3390/su10041054
Zare, Yaser; shahriyari, leila; parhodeh, saaed; & karbakhsh, ali. (2020). An Analysis of the Effects of Nano Concrete On Sustainable Urban Development (Case Study: Shiraz Metropolis). Research and Urban Planning, 10(39), 75-88, (In Persian).
Zhao, L., Zha, Y., Zhuang, Y., & Liang, L. (2019). Data envelopment analysis for sustainability evaluation in China: Tackling the economic, environmental, and social dimensions. European Journal of Operational Research, 3(275), 1083-1095. https://doi.org/https://doi.org/10.1016/j.ejor.2018.12.004
Ziyaei, M., Ghaderi, E., & Ahmadi, S. (2018). Determine the Carrying Capacity and Ecological Footprint in the Destinations of Nature Walking (Case Study: Zarivar Lake). Geography and territorial spatial arrangement, 7(25), 56-39, (In Persian).