بهینه‌سازی فضایی ایستگاه‌های آتش‌نشانی در زمینه دسترسی و پوشش خدماتی (مطالعه موردی: زابل)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه جغرافیا و برنامه‌ریزی شهری، دانشکده جغرافیا و برنامه‌ریزی محیطی دانشگاه سیستان و بلوچستان، زاهدان، ایران.

2 دانشجوی دکتری جغرافیا و برنامه‌ریزی شهری، دانشکده جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

چکیده

امروزه مکان گزینی بهینه ایستگاه‌های آتش‌نشانی یکی از ضروریات مهم در زمینه کارآمدی و واکنش به‌موقع مدیریت شهری به مخاطرات احتمالی است. روش‌های بهینه‌سازی فضایی به دلیل ویژگی‌های خاص فضایی و مکانی مسائل مرتبط با تسهیلات شهری کاربرد گسترده‌ای در این زمینه دارند. از عمده‌ترین این موارد می‌توان به روش‌های مبتنی بر میان یابی و حداکثر پوشش خدماتی اشاره کرد. شهر زابل در وضعیت موجود دارای دو ایستگاه آتش‌نشانی عملیاتی است که به دلیل وسعت زیاد شهر و توسعه فیزیکی سریع آن، توانایی پاسخ‌گویی مطلوب به حوادث و اتفاقات شهری را ندارد ازاین‌رو نیازمند تجدیدنظر جدی و افزایش تعداد ایستگاه‌ها تا حد مطلوب است. تحقیق حاضر از لحاظ روش‌شناسی توصیفی، ازلحاظ هدف کاربردی و مبتنی بر مطالعات کتابخانه‌ای و بررسی‌های میدانی است. این پژوهش با تکیه‌بر سناریو نگاری یک مدل بهینه‌سازی فضایی چندهدفه را ارائه می‌نماید که اهداف مرتبط با حد میانه و حداکثر پوشش خدماتی در زمینه استقرار ایستگاه‌های آتش‌نشانی در شهر زابل را باهم ترکیب کرده و درنهایت با استفاده از روش بهینه‌سازی پارتو شدت بهبود دسترسی با فرض مقادیر مختلف q (تعداد ایستگاه آتش‌نشانی) را نمایش می‌دهد. یافته‌های حاصل از سناریو های پژوهش نشان داد که با افزایش تعداد معینی از ایستگاه ‌ها در بخش‌های مختلف شهر، دسترسی با شدت‌های متفاوتی بهبود پیدا می‌کند، برای مثال با فرض استقرار تعداد 6 ایستگاه در فواصل مشخصی نسبت به هم دیگر، دسترسی در مقایسه با وضعیت موجود تا 9 درصد بهبود پیدا می‌کند و در صورت افزایش این تعداد تا 12 مورد دسترسی تا 60 درصد ارتقا پیدا می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Space optimization of fire stations in the field Access and service coverage (case study: Zabol)

نویسندگان [English]

  • Hossein yaghfoori 1
  • vahid Pasban Essaloo 2
  • Seyed ali Hosseini 2
1 Associate Prof., Faculty of Geography and Environmental Planning, Sistan & Baloochestan University, Zahedan, Iran
2 PhD student in geography and urban planning, Faculty of Geography and Environmental Planning, Sistan & Baloochestan University, Zahedan, Iran.
چکیده [English]

Today, the optimal location of fire stations is one of the important necessities in the field of efficiency and timely response of urban management to potential hazards. Spatial optimization methods are widely used in this field due to special and spatial features of issues related to urban facilities. Among the most important of these items are interpolation-based methods and maximum service coverage. In the current situation, the city of Zabol has two operational fire stations, which due to the large size of the city and its rapid physical development, are not able to adequately respond to urban incidents and events, so it needs serious revision and increase the number of stations to the desired level. The present research, in terms of methodology is descriptive, in terms of purpose is applied and is based on library studies and field studies. Based on the scenario, this study presents a multi-objective spatial optimization model that combines the objectives related to the middle limit and maximum service coverage in the field of fire stations in Zabol city and finally using the Pareto optimization method Displays the improve access intensity. Findings from the research scenarios showed that with a certain increase in the number of stations in different parts of the city, access improves with different intensities. For example, assuming 6 stations are located at certain distances from each other, access will improve by up to 9% compared to the current situation, and if this number increases to 12, access will increase by up to 60%.

کلیدواژه‌ها [English]

  • Site selection
  • fire station
  • access
  • maximum service coverage
  1. Agha babai, Mahbobe (2009). Spatial analysis of fire stations and services in Khomeini Shahr using GIS, Master Thesis, University of Isfahan.
  2. Aktaş, E., Özaydın, Ö., Bozkaya, B., Ülengin, F., & Önsel, Ş. (2013). Optimizing fire station locations for the Istanbul metropolitan municipality. Interfaces, 43(3), 240–255.
  3. Badri, M. A., Mortagy, A. K., & Alsayed, C. A. (1998). A multi-objective model for locating fire stations. European Journal of Operational Research, 110(2), 243–260.
  4. Brushlinsky, N. N., Ahrens, M., Sokolov, S. V., & Wagner, P. (2017). World fire statistics. Center of Fire Statistics 22. 2017 Report http://www. ctif. org/sites/default/files/ctif_ pdf, Accessed date: 30 September 2017.
  5. Çatay, B. (2011). Siting new fire stations in Istanbul: A risk-based optimization approach. OR Insight, 24(2), 77–89.
  6. Chevalier, P., Thomas, I., Geraets, D., Goetghebeur, E., Janssens, O., Peeters, D., & Plastria, F. (2012). Locating fire stations: An integrated approach for Belgium. Socio- Economic Planning Sciences, 46(2), 173–182.
  7. Chevalier, P., Thomas, I., Geraets, D., Goetghebeur, E., Janssens, O., Peeters, D., & Plastria, F. (2012). Locating fire stations: An integrated approach for Belgium. Socio- Economic Planning Sciences, 46(2), 173–182.
  8. Chevalier, P., Thomas, I., Geraets, D., Goetghebeur, E., Janssens, O., Peeters, D., & Plastria, F. (2012). Locating fire stations: An integrated approach for Belgium. Socio- Economic Planning Sciences, 46(2), 173–182.
  9. Church, R., & Li, W. (2016). Estimating spatial efficiency using cyber search, GIS, and spatial optimization: A case study of fire service deployment in Los Angeles County. International Journal of Geographical Information Science, 30(3), 535–553.
  10. Church, R., & ReVelle, C. R. (1974). The maximal covering location problem. Papers in Regional Science, 32(1), 101–118.
  11. Cohon, J. (1978). Multi-objective programming and planning. New York: Academic Press.
  12. Deb, K. (2014). Multi-objective optimization. In E. K. Burke, & G. Kendall (Eds.). Search methodologies: Introductory tutorials in optimization and decision support techniques (pp. 403–449). Boston, MA: Springer.
  13. Drezner, Z., & Hamacher, H. W. (Eds.). (2001). Facility location: Applications and theory. Springer Science & Business Media.
  14. Hakimi, S. L. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3), 450–459.
  15. Hodgart, R. L. (1978). Optimizing access to public services: A review of problems, models and methods of locating central facilities. Progress in Geography, 2(1), 17–48.
  16. Hodgart, R. L. (1978). Optimizing access to public services: A review of problems, models and methods of locating central facilities. Progress in Geography, 2(1), 17–48.
  17. Hogg, J. M. (1968). The siting of fire stations. Journal of the Operational Research Society, 19(3), 275–287.
  18. Kanoun, I., Chabchoub, H., & Aouni, B. (2010). Goal programming model for fire and emergency service facilities site selection. INFOR: Information Systems and Operational Research, 48(3), 143–153.
  19. Liu, N., Huang, B., & Chandramouli, M. (2006). Optimal siting of fire stations using GIS and ANT algorithm. Journal of Computing in Civil Engineering, 20(5), 361–369.
  20. Montazery, Gholamhosein (2004), Location of municipal service centers with emphasis on fire stations in Sari, M.Sc. Thesis in Geography, Shahid Beheshti University, Tehran.
  21. Murray, A. T. (2010). Advances in location modeling: GIS linkages and contributions. Journal of Geographical Systems, 12(3), 335–354.
  22. Murray, A. T. (2013). Optimising the spatial location of urban fire stations. Fire Safety Journal, 62, 64–71.
  23. Murray, A. T. (2015). Fire station siting. In H. A. Eiselt, & V. Marianov (Eds.). Applications of location analysis (pp. 293–306). Springer International Publishing.
  24. Murray, A. T., & Tong, D. (2009). GIS and spatial analysis in the media. Applied Geography, 29(2), 250–259.
  25. Plane, D. R., & Hendrick, T. E. (1977). Mathematical programming and the location of fire companies for the Denver fire department. Operations Research, 25(4), 563–578.
  26. Plane, D. R., & Hendrick, T. E. (1977). Mathematical programming and the location of fire companies for the Denver fire department. Operations Research, 25(4), 563–578.
  27. Rahman, M; Chen, N et al (2021), Location- allocation modeling for emergency evacuation planning with GIS and remote sensing: A case study of Northeast Bangladesh, Geoscience Frontiers, 3 (12), pp1-17.
  28. Reilly, J. M., & Mirchandani, P. B. (1985). Development and application of a fire station placement model. Fire Technology, 21(3), 181–198.
  29. Reilly, J. M., & Mirchandani, P. B. (1985). Development and application of a fire station placement model. Fire Technology, 21(3), 181–198.
  30. Richard, D., Beguin, H., & Peeters, D. (1990). The location of fire stations in a rural environment: A case study. Environment and Planning A, 22(1), 39–52.
  31. Roknedin Eftekhary, A; Ahed allah; Haji pour, Mojtaba (2012). Assessing the spatial distribution of quality of life in rural areas (Case study: Central part of Delfan city), Journal of Rural Research, 2 (2): 69- 94.
  32. Schilling, D. A., Revelle, C., Cohon, J., & Elzinga, D. J. (1980). Some models for fire protection locational decisions. European Journal of Operational Research, 5(1), 1–7.
  33. Schilling, D. A., Revelle, C., Cohon, J., & Elzinga, D. J. (1980). Some models for fire protection locational decisions. European Journal of Operational Research, 5(1), 1–7.
  34. Schreuder, J. A. M. (1981). Application of a location model to fire stations in Rotterdam. European Journal of Operational Research, 6(2), 212–219.
  35. Toregas, C., Swain, R., Revelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations Research, 19(6), 1363–1373.
  36. Yao, Jing; Zhang, Xiaoxiang; Murray, Alan. (2019). Location optimization of urban fire stations: Access and service coverage, Computers, Environment and Urban Systems, Vol 73, pp 184-190.

Zyari, Karamatollah; Givech, Saeed, Adeli, Mohsen (2018). Optimizing the location of fire stations in Gorgan using classification method and colonial competition algorithm with earthquake crisis management approach, ournal of Space Planning and Planning, 21 (3): 25